
WEB APP ARCHITECTURES:
MULTI-TIER (2-TIER, 3-TIER)
MODEL-VIEWER-CONTROLLER (MVC)
REST ARCHITECTURAL STYLE

Slides created by Manos Papagelis

Based on materials by Marty Stepp, M. Ernst, S. Reges, D. Notkin, R. Mercer, R. Boswell,Wikipedia

Overview

¨  Data Independence in Relational Databases
¨  N-tier Architectures
¨  Design Patterns

¤ The MVC Design Pattern

¨  REST Architectural Style

Data Independence in Rel. DBMS

4

User1

View1

User2

View2

Conceptual Schema

Internal Schema

Disk

What users see

Tables and links

Files on disk

Each level is independent of the levels below

Database Architecture With Views

Logical and Physical Independence

User1

View1

User2

View2

Conceptual Schema

Internal Schema

Disk

Each level is independent of the levels below

Logical
Independence

Physical
 independence

Data Independence

¨  Logical Independence: The ability to change the logical
schema without changing the external schema or application
programs
¤  Can add new fields, new tables without changing views
¤  Can change structure of tables without changing view

¨  Physical Independence: The ability to change the physical
schema without changing the logical schema
¤  Storage space can change
¤  Type of some data can change for reasons of optimization

LESSON: Keep the VIEW (what the user sees) independent of
the MODEL (domain knowledge)

N-tier architectures

Significance of “Tiers”

¨  N-tier architectures have the same components
¤ Presentation
¤ Business/Logic
¤ Data

¨  N-tier architectures try to separate the components
into different tiers/layers
¤  Tier: physical separation
¤  Layer: logical separation

1-Tier Architecture

¨  All 3 layers are on the same machine
¤  All code and processing kept on a single machine

¨  Presentation, Logic, Data layers are tightly connected
¤  Scalability: Single processor means hard to increase volume of processing
¤  Portability: Moving to a new machine may mean rewriting everything
¤  Maintenance: Changing one layer requires changing other layers

2-Tier Architecture

¨  Database runs on Server
¤  Separated from client
¤  Easy to switch to a different database

¨  Presentation and logic layers still tightly connected
¤  Heavy load on server
¤  Potential congestion on network
¤  Presentation still tied to business logic

Server Client

3-Tier Architecture

¨  Each layer can potentially run on a different machine

¨  Presentation, logic, data layers disconnected

Server Client DB Server

A Typical 3-tier Architecture

Architecture Principles
¨  Client-server architecture

¨  Each tier (Presentation, Logic,
Data) should be independent
and should not expose
dependencies related to the
implementation

¨  Unconnected tiers should not
communicate

¨  Change in platform affects
only the layer running on
that particular platform

A Typical 3-tier Architecture

Presentation Layer
¨  Provides user interface

¨  Handles the interaction with
the user

¨  Sometimes called the GUI or
client view or front-end

¨  Should not contain business
logic or data access code

A Typical 3-tier Architecture

Logic Layer
¨  The set of rules for

processing information

¨  Can accommodate many
users

¨  Sometimes called
middleware/back-end

¨  Should not contain
presentation or data access
code

A typical 3-tier Architecture

Data Layer
¨  The physical storage layer

for data persistence

¨  Manages access to DB or file
system

¨  Sometimes called back-end

¨  Should not contain
presentation or business logic
code

The 3-Tier Architecture for Web Apps

¨  Presentation Layer
 Static or dynamically generated content rendered by the
browser (front-end)

¨  Logic Layer
 A dynamic content processing and generation level
application server, e.g., Java EE, ASP.NET, PHP, ColdFusion
platform (middleware)

¨  Data Layer
 A database, comprising both data sets and the database
management system or RDBMS software that manages and
provides access to the data (back-end)

3-Tier Architecture - Advantages

¨  Independence of Layers
¤ Easier to maintain
¤ Components are reusable

¤ Faster development (division of work)
n Web designer does presentation
n Software engineer does logic
n DB admin does data model

Design Patterns

Design Problems & Decisions

¨  Construction and testing
¤  how do we build a web application?
¤  what technology should we choose?

¨  Re-use
¤  can we use standard components?

¨  Scalability
¤  how will our web application cope with large numbers of requests?

¨  Security
¤  how do we protect against attack, viruses, malicious data access, denial

of service?
¨  Different data views

¤  user types, individual accounts, data protection

Need for general and reusable solution: Design Patterns

What is a Design Pattern?

¨  A general and reusable solution to a commonly
occurring problem in the design of software

¨  A template for how to solve a problem that has
been used in many different situations

¨  NOT a finished design
¤  the pattern must be adapted to the application
¤ cannot simply translate into code

Origin of Design Patterns

¨  Architectural concept by Christopher
Alexander (1977/79)

¨  Adapted to OO Programming by Beck and
Cunningham (1987)

¨  Popularity in CS after the book: “Design
Patterns: Elements of Re-useable Object-
oriented software”, 1994. Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides

¨  Now widely-used in software engineering

The MVC Design Pattern

Design Problem

¨  Need to change the look-and-feel without changing
the core/logic

¨  Need to present data under different contexts (e.g.,
powerful desktop, web, mobile device).

¨  Need to interact with/access data under different
contexts (e.g., touch screen on a mobile device,
keyboard on a computer)

¨  Need to maintain multiple views of the same data
(list, thumbnails, detailed, etc.)

Design Solution

¨  Separate core functionality from the presentation
and control logic that uses this functionality

¨  Allow multiple views to share the same data model
¨  Make supporting multiple clients easier to

implement, test, and maintain

The Model-View-Controller Pattern

Design pattern for graphical systems
that promotes separation between
model and view

With this pattern the logic required
for data maintenance (database,
text file) is separated from how the
data is viewed (graph, numerical)
and how the data can be interacted
with (GUI, command line, touch)

The MVC Pattern

¨  Model
¤  manages the behavior and data of the

application domain
¤  responds to requests for information

about its state (usually from the view)
¤  follows instructions to change state

(usually from the controller)
¨  View

¤  renders the model into a form suitable
for interaction, typically a user interface
(multiple views can exist for a single
model for different purposes)

¨  Controller
¤  receives user input and initiates a

response by making calls on model
objects

¤  accepts input from the user and instructs
the model and viewport to perform
actions based on that input

The MVC Pattern (in practice)

¨  Model
¤  Contains domain-specific knowledge
¤  Records the state of the application

n  E.g., what items are in a shopping cart
¤  Often linked to a database
¤  Independent of view

n  One model can link to different views

¨  View
¤  Presents data to the user
¤  Allows user interaction
¤  Does no processing

¨  Controller
¤  defines how user interface reacts to user input (events)
¤  receives messages from view (where events come from)
¤  sends messages to model (tells what data to display)

The MVC for Web Applications

¨  Model
¤  database tables (persistent data)
¤  session information (current system state data)
¤  rules governing transactions

¨  View
¤  (X)HTML
¤  CSS style sheets
¤  server-side templates

¨  Controller
¤  client-side scripting
¤  http request processing
¤  business logic/preprocessing

MVC Advantages

¨  Clarity of Design
¤  model methods give an API for data and state
¤  eases the design of view and controller

¨  Efficient Modularity
¤  any of the components can be easily replaced

¨  Multiple Views
¤  many views can be developed as appropriate
¤  each uses the same API for the model

¨  Easier to Construct and Maintain
¤  simple (text-based) views while constructing
¤  more views and controllers can be added
¤  stable interfaces ease development

¨  Distributable
¤  natural fit with a distributed environment

3-tier Architecture vs. MVC Architecture

¨  Communication
¤  3-tier: The presentation layer never communicates directly

with the data layer-only through the logic layer (linear
topology)

¤  MVC: All layers communicate directly (triangle topology)
¨  Usage

¤  3-tier: Mainly used in web applications where the client,
middleware and data tiers ran on physically separate
platforms

¤  MVC: Historically used on applications that run on a single
graphical workstation (applied to separate platforms as
Model 2)

